Lisaac: the power of simplicity at work for operating system

Benoit Sonntag

Dominique Colnet

LORIA
UMR 7503
(INRIA - CNRS - University Henri Poincaré)
Campus Scientifique, BP 239,
54506 Vandeeuvre-ls-Nancy Cedex
FRANCE
Email: {bsonntag, colnet}@loria.fr

Abstract

The design as well as the implementation of the Isaac oper-
ating system (Sonntag 2000) led us to set up a new program-
ming language named Lisaac. Many features from the Lisaac
language come from the Self programming language (Ungar
& Smith 1987). Comparing to Self’s skills, Lisaac integrates
communications protection mechanisms as well as other tools
related to operating systems’ design. System interruptions sup-
port as well as drivers memory mapping have been considered
in the design of Lisaac. The use of prototypes and especial-
ly dynamic inheritance, fits a flexible operating system in the
making. First benchmarks of our compiled objects show that
it is possible to obtain high-level prototype-based language’s
executables as fast as C programs are.

Keywords: Object model, prototype, operating sys-
tem, Self

1 Introduction

The very nature of current operating systems comes
from studies, languages, hardware and needs going
back to a score of years. The purpose of our project
is to break with the internal rigidity of current op-
erating systems architecture that mainly depends, in
our opinion, on low-level languages that have been
used to write them. Our Isaac operating system has
been fully written with a high-level prototype-based
language.

The evolution of computer’s programming lan-
guages currently fulfills nowadays data-processing’s
needs and constraints in terms of software conception
and production. Nevertheless, modern languages (i.e.
object-oriented languages), did not bring a real alter-
native to procedural programming languages as the C
language is in the development of a modern operating
system. They require high performances in terms of
execution speed and memory usage, but also simple
inner low-level operations. We also believe that the
object-oriented operating system must not be on top
of a virtual machine but directly installed on hard-
ware components. Indeed, it is essential to be able
to reach the very best performances. It is desirable
and possible to fully use the hardware in order to pro-
vide, at the operating system’s level, services that are
currently supplied by software layers (garbage collec-
tor, inter process communication, common memory
buffers, ...).

Historically, during the making of an operating
system, constraints related to the hardware program-

Copyright ©2002, Australian Computer Society, Inc. This paper
appeared at the 40th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific 2002),
Sydney, Australia. Conferences in Research and Practice in In-
formation Technology, Vol. 10. James Noble and John Potter,
Eds. Reproduction for academic, not-for profit purposes permit-
ted provided this text is included.

ming have been systematically fulfilled with a low-
level language as the C language. This choice leads,
in general, to a lack of flexibility that can be felt at
the applicative layer.

Our thought process led us to set up a new object-
oriented language with extra facilities useful for the
implementation of an operating system. In order to
achieve that point, we started to look for an existing
object-oriented language with powerful characteris-
tics in terms of flexibility and expressiveness. Actual-
ly, two languages are at the origin of Lisaac: the Self
language (Ungar & Smith 1987) for its flexibility and
the Eiffel language (Meyer 1994) for its static typing
and security. Our language comes also from an ex-
periment in the making of an operating system based
on dynamic objects; its possibilities are a subtle mix
of Self with Eiffel and we add it some low-level capa-
bilities of the C language. Compared to Self, it is a
little bit limited especially in the way that source files
are compiled. From the Eiffel language, we borrowed
a kind of static typing form. As for it, the implemen-
tation is particularly original on many points.

The remainder of this paper is organized as fol-
lows. section 2 describes the environment of Isaac,
the compilation and the execution of objects in mem-
ory. Then, section 3 takes place with a description
of the Lisaac language, followed by its semantics de-
scribed in section 4. Next, section 5 will validate our
model with relevant examples of the system’s imple-
mentation diagrams as well as the first benchmarks
of the compiler. We conclude in section 6.

2 The Lisaac language and the Isaac system:
an overview

It is clear for us that an operating system must use
all the power of hardware components. For this rea-
son, the Isaac operating system does not run on top
of a virtual machine but directly on hardware com-
ponents (i.e. directly on the micro-processor), hence
the choice of a compiler approach to avoid — at run
time — the interpretor overhead.

As in the case of the Eiffel language, an Isaac ob-
ject is defined by its source code stored in a file of the
same name as the object it defines. As in the tradi-
tional approach, this file is processed by our Lisaac
compiler in order to produce the corresponding exe-
cutable binary file.

To facilitate the portability of the system,
our compiler operates closely with GCC (steering
committee 2000) and the ELF (elf 1995) binary link-
er. A compatibility at the source level for applications
written in C has been studied, but the mechanisms
involved are not in the scope of this article, neverthe-
less, we want to stress out that the interfacing used
remains coherent with the Isaac object model.

As in Self, a prototype may have a name or can
be an anonymous one. All prototypes are clonable

and may be modified at runtime. Even the inheri-
tance relationship between prototypes may change at
runtime.

Mostly for security reasons as well as for organi-
zation of our model, there are two kinds of objects:
PRIVATE objects (also called micro-objects) and oth-
er objects (called macro-objects). A macro-object is
usually used to represent a complex object like some
hardware component (e.g. mouse, keyboard, ...) or
some complex software component (file, bitmap, ...).
Micro-objects are PRIVATEs and are composed in or-
der to constitute some macro-object. Micro-objects
are usually simple (e.g. integer, string, ...) and
are used for macro-objects implementation. Never-
theless, micro-objects may represent more complex
data like linked lists or dictionaries for example.

Actually, as we will see later, the syntax to de-
scribe macro-objects and micro-objects is the same.
The major difference comes from the compilation s-
trategy used (fig. 1). Each macro object is compiled
separately to produce the corresponding executable
object. All interactions between macro-objects are
dynamically typed (i.e. no verification at compile
time). Inside some macro-object, all PRIVATE ob-
jects are checked statically using an Eiffel-like ap-
proach (Zendra, Colnet & Collin 1997) (Colnet &
Zendra 1999).

Thus, interactions between macro-objects are
checked only at runtime. For example, on the Intel
architecture (Processor n.d.), this is achieved using
hardware mechanism. Interactions between micro-
objects are checked only at compile time. Those
objects are compiled in the context of some macro-
object which use them and do not require the creation
of a genuine Isaac prototype as such. Finally, to ease
the implementation of containers like arrays, linked
lists and dictionaries for example, we also added a
form of genericity such as the one defined in Eiffel
(Meyer 1994).

Dynamic typing allows flexible interaction or com-
munication between operating system components.
In Lisaac source code, all macro-objects are all de-
clared with the type mark OBJECT, the most general
prototype.

3 Lexical and syntax overview

Most features of the Lisaac language come from Self.
Like Self, Lisaac does not have hard-coded instruc-
tions for loops or hard-coded instructions for test s-
tatements.

The following syntax of Lisaac is described us-
ing “Extended Backus-Naur Form” (EBNF). Termi-
nal symbols are enclosed in single quotes or are writ-
ten using lowercase letters. Non-terminal are written
using uppercase letters. The following table describes
the semantic of meta-symbols used:

‘ Symbol ‘ Description ‘

(..

a group of syntactic constructions

an optional construction
a repetition (zero or more times)

| separates alternative constructions
— separates the left and right hand
sides of a production

In order to clarify the presentation for human read-
ing, the following grammar of Lisaac is ambiguous.
(Actually, the Lisaac parser use precedence and
associativity rules to resolve ambiguities.) The

Lisaac grammar (fig. 3) is immediately followed by
an example to illustrate the syntax (fig. 4).

4 Some aspects of the semantics of Lisaac

To make short the presentation of the semantics of
Lisaac, we consider in the following section that the
reader is familiar with the rudimentary notions of the
Self language, main source of inspiration of Lisaac.
Because it is not possible to present here all details of
the semantics of our language, we emphasize only the
differences between Lisaac and Self. These differences
are of course related to the fact that Lisaac is a lan-
guage aiming at implementing Isaac, our operating
system.

As in Self, a prototype can change its behavior
during the execution, either by adding, redefining or
suppressing slots.

4.1 Section identifiers

The identifier of a section makes it possible to choose
the interpretation of the slots which are in this sec-
tion. The interpretation of the slots relates to various
aspects:

e heading and versioning information (cf. 4.1.1).

e the mode of application of the lookup mechanism:
inheritance slot (cf. 4.1.2) and traditional message s-
lot.

e the protection and the level of accessibility of the
slots (cf. 4.1.3).

e the compilation mode of the code (remote code
mode, close code mode or hardware interrup-
tion/exception mode 4.1.4, data structure mapping
mode 4.1.5, ...).

4.1.1 The HEADER section

The HEADER section is used to enumerate the general
parameters of the prototype. This section is manda-
tory and must include the name slot which indicates
the name of the prototype itself. The category slot
indicates the category of the prototype with respect
to its level of protection related to the other proto-
types (cf. 4.1.3). Other optional slots can be added
in this section to comment on the prototype. In this
section, only the slots containing constants (character
string, or numerical constants) are authorized.

In addition, some conventions on the names of the
slots have been fixed for the purpose of maintenance
and to ensure consistency of the information of the
HEADER section (fig. 5).

4.1.2 The INHERIT section

This section describes the inheritance slots of the ob-
ject. As in Self, a prototype can have several parent
slots (i.e. multiple inheritance). The slots of this sec-
tion being mostly used by the lookup mechanism, only
slots without arguments are authorized.

Most of the time, a slot of the INHERIT section
indicates another prototype simply by using its name.
It is also possible to define a parent slot using an
instruction block. When this is the case, the value of
the parent slot is initialized with the result value of
the evaluation of this block during the first use of the
prototype. The instruction block which describes the
value of a parent slot is evaluated only once. In case
of further cloning of this prototype, no reevaluation
of the block is carried out.

As in Self, the assignment of a parent slot may oc-
curs at any time to change dynamically the ancestors
of the prototype. A parent slot with no value at a

OBJECT)

Code C after
conpi l ation
(Bi nary)

+ Compilation

Conpi | ation

enacs =
(binary)

Static Type Checking (Eiffel-Ilike)
Dynami ¢ Typi ng (generic type:

———

Program C

| saac objects

Figure 1: Only PRIVATE objects are checked statically when other objects are typed dynamically.

‘ Symbol ‘ Description ‘ Syntax
identifier | type, slot name, ... [A-Za-z_]|[A-Za-z0-9_]*
characters | constant of CHARACTER type |’ ASCII string’
string constant of STRING type 7 ASCII string”
external external C code ‘ASCII string*
integer constant of INTEGER type 0x[0-9A-Fa-f]+ ou 0[0-7]* ou [1-9][0-9]*
operator | unary/binary operator symbol | [! @#$%N&< | *+-=~/7>\]*

Figure 2: The list of the final syntactic elements of the grammar.

EXPR_PRIMARY integer | characters | string | external
*(PEXPR’)’ | "{" {EXPR’;’ } '}’

TYPE [LLARGUMENT { identifier L_ARGUMENT }]
{ ARGUMENT ’,’ } ARGUMENT

SEND_MSG
L_ARGUMENT

PROGRAM — {’section’identifier {SLOT}}
SLOT — TYPESLOT[’:> TYPE] [’=’ { °+’ LOCAL’;’ } EXPR] ’;’
TYPE_SLOT — identifier [L_.LOCAL { identifier L_LOCAL }]
| operator [identifier ’:’ TYPE] [ASSOCIATIVITY]
ASSOCIATIVITY — (’left’ | ’right’) [integer]
L_LOCAL — {LOCAL’,’ } LOCAL
LOCAL — {identifier’,’ } identifier ’:’ TYPE
TYPE — identifier [’ [’ {identifier’,’ }identifier’]’]
EXPR — { EXPR_PREFIX operator } EXPR_PREFIX
EXPR_PREFIX = — {operator } EXPR_MESSAGE
EXPR_MESSAGE — EXPR_BASE{’.’ SEND_MSG }
EXPR_BASE — EXPR_PRIMARY | SEND_MSG
ARGUMENT — EXPR_PRIMARY | identifier
_>
I
N
_>

Figure 3: The Lisaac grammar.

section HEADER
name = QUICKSORT;
category = PRIVATE;
date = ”Oct 28 20017;
version = 1;
comment = ”"Example for TOOLS.”;
author = ”Benoit Sonntag.”;

section PRIVATE
size = 20000000;
tableau: NATIVE_ARRAY [CHARACTER] ;
myqsort tab:NATIVE_ARRAY[CHARACTER] from low:INTEGER to high:INTEGER =
+ i, j : INTEGER;
+ X, y : CHARACTER;
low;

high;
tab.item ((i + j) >> 1);

~— . .

(tab.item i < x).while { i
(x < tab.item j).while { j
(1 <= j).if

1+
=

[SR

y = tab.item 1i;
tab.put (tab.item j), i;

tab.put y, j;
i=1+1;
i=i-%

}.w}ii’le 1 <= j);

(low < j) .if { myqgsort tab from low to j; ;
(i < high).if { myqgsort tab from i to high;

H

Figure 4: The quick sort example in Lisaac.

‘ Slot name Type ‘ Description ‘ Level
name string name of the prototype mandatory
category PRIVATE, KERNEL, | protection level default is PUBLIC

DRIVER, PUBLIC
version integer version number mandatory
date string release date optional
comment string Comment optional
author string author’s name optional
bibliography | string programmer’s reference optional
language integer encoding country language | optional
bug_report string bugs report list optional

Figure 5: Conventions on the names of the slots.

Net wor k
obj ects
(NETWORK)

Sof t war e
obj ects
(PUBLI ©)

Driver E
obj ects q
(DRI VER)
Ker nel
obj ects

(KERNEL)

— al | owed nessage
- - incorrect message

Figure 7: The four levels to protect objects commu-
nication.

given time is simply ignored by the lookup algorithm.
Adding a new inheritance slot during the execution
is not allowed in Lisaac. Slots of the INHERIT section
are not visible from outside of the object itself. Ac-
cessing a parent slot simply yields the corresponding
parent object if any.

The order in which the slots are declared is obvi-
ously important for the lookup algorithm while seek-
ing a message. The inheritance slots are examined
with respect to the order in which the source text is
written, in a deep-first way, without taking account
of possible conflicts.

A message call applied to some parent slot is the
natural mechanism to achieve he equivalent of super
in Smalltalk or resend in Self. This means that the
message is sent to the parent with the current object
context (self on the figure 6).

4.1.3 Sections PRIVATE, KERNEL, DRIVER, PUB-
LIC and NETWORK

These names of section define the level of accessibility
and protection of the corresponding slots. For exam-
ple, the slots defined in a section PRIVATE are visible
only inside this prototype. They are not accessible
from another place, even by descendants (one does
not inherit the section PRIVATE).

The other sections (KERNEL, DRIVER, NETWORK
and PUBLIC) make it possible to fix the policy of in-
teraction between prototypes knowing that: the PUB-
LIC category is reserved for the unreliable objects, the
KERNEL category is dedicated to the critical object-
s of the system, the DRIVER category is reserved for
hardware drivers objects, and finally, the NETWORK
category is reserved for the objects coming from a
network or being carried out on a distant machine.

Without presenting here in details all the rules of
communications (fig. 7), let us quote for example
that an unreliable object (category PUBLIC) cannot
be used by a critical object (category KERNEL). The
goal of this rule is to avoid putting in danger the
integrity of the system at the time of the call of a
functionality of the core.

Thus, there are four levels of protection checked at
runtime: KERNEL, DRIVER, PUBLIC and NETWORK.
Checking can be achieved by using built-in hardware
protection mechanism mixed with software protection
when the processor has only two hardware protection
levels (intel processor have four level of protection
while motorola has only two levels). An assumption
of responsibility of protections by the processor and

a single space of addressable memory allow a protect-
ed and powerful communication between the objects
(Sonntag 2001).

4.1.4 Section INTERRUPT

The goal of the INTERRUPT section is to handle hard-
ware interruptions. In such a section code slots are
allowed. Each slot is associated with one of the pro-
cessor’s interruptions (Hummel 1990). These slots d-
iffer from others in their generated code. For example,
their entry and exit codes are related to the interrupt
processing. Their invocations are asynchronous and
borrow the quantum of the current process. General-
ly, these slots are little time consumers and they don’t
require specific process’ context for their executions.
It is thus necessary to be careful while programming
such slots to ensure the consistency of the interrupted
process.

4.1.5 Section PACKAGE

The PACKAGE section purpose is to format data slot-
s description according to some fixed hardware data
structure. The main goal of PACKAGE section is to de-
scribe in Lisaac device drivers. In such a section, the
compiler follows exactly the order and the description
of slots as they are written to map exactly the corre-
sponding hardware data structure. Thus, one is able
to write data slots description according to the hard-
ware to handle. Slots inside some PACKAGE section
are considered private for any other objects.

4.2 Message passing

Syntax of message calls in Lisaac strongly looks like
message calls in Self. The arguments may be sepa-
rated by commas or may use keywords as well (the
method name is splitted into words to separate ar-
guments). As in Self, the semicolon ’;’ means that
the same receiver is use again for the second method
invocation (i.e. sequence).

4.2.1 Binary messages

Compared to Self, we added the possibility to chose
the associativity and the priority of operators as in the
ELAN language (P. Borovansk y 2000). To select the
associativity of an operator, one must use the keyword
left or the keyword right. The default associativity is
left and the default priority is 1 (the highest one).

4.2.2 Unary messages

Only the prefixed unary operators are allowed. The
A’ operator is reserved for returning a value inside a
method body. As usual, the type of the expression
after A’ must be compatible with the type signature
of the method.

Moreover, the unary operator '?’ is used to allow
a rudimentary contract-programming mechanism. It
is more like the assert mechanism of the language C
than the powerful require/ensure Eiffel mechanism.
Once the object has been tested, the programmer can
withdraw these assertions in the final delivery version
by using a simple option of the compiler.

4.3 Blocks

Instruction blocks are defined by the ’{’ ...’} nota-
tion and are BLOCK objects. In Lisaac, block objects
cannot have arguments or local variables. Their eval-
uations are carried out in their definition environmen-
t. This decision is different from the Self language in

section PUBLIC

section | NHERIT lproc=¢ ...} @
[Parent = B; .1'/“

section PUBLIC Obj ect B.

proc = { @

copy = B; @
A

bj ect A :

- Start condition ~<
/// \\\
//’/ \\\\

«~ section PUBLIC ~~a [section PUBLIC
section | NHERI T lproc =(...} @ section | NHERI T lproc =(...} @
[Parent = B; of— 74 [Parent = B; of— 74
section PUBLIC oj ect B. section PUBLIC bj ect B :
proc ={ ... }; @ proc ={ ... }; @
copy = B; @ copy = B; @

Obj ect A : Obj ect A

During execution of:
Par ent . proc;

During execution of:
copy. proc;

Figure 6: The equivalent of super in Smalltalk or resend in Self.

order to facilitate their use which is similar to instruc-
tion blocks in ordinary C code.

5 The design of Isaac in Lisaac

The intent of this section is to show that a high-level
prototype-based language fits very well with an op-
erating system design and implementation. Here are
some selected examples from the Isaac operating sys-
tem as it is implemented in Lisaac.

5.1 Hardware components wversus software
components

In the Isaac system objects hierarchy, true physical
hardware objects (e.g. keyboard, mouse, memory,
...) are distinguished from system-software object-
s (e.g. file, vector, bitmap, ...). In a very natural
way, inheritance is used to separate hardware objects
from software objects. The reason of this segregation
is that hardware objects are not clonable by anoth-
er PUBLIC object. Using other words: one cannot
clone a screen if the physical new screen does not
exists. Hardware components are obviously natural
critical resources. Conversely, software components,
SOFT_OBJECT (fig. 8), inherit the traditional Clone
method with PUBLIC accessibility. Also note that the
common set of named object is available to all thanks
to the general OBJECT prototype.

5.2 Dynamic inheritance at work for video
drivers

Figure 9, represents the Isaac’s video architecture.
The VIDEO object can change dynamically its parent
slot to inherit BITMAP_15 or BITMAP_16 or BITMAP_24
or BITMAP_32 as well. Actually, dynamic inheritance
is obviously used to change dynamically the bitmap
resolution (one or more times). The reference to the
VIDEO object remains unchanged for clients allowing
the resolution mode to be changed transparently (i.e.
only the parent slot of the VIDEO object is modified).

Moreover, the VIDEO object can redefine any
BITMAP’s functionalities in order to take as many ad-
vantages as possible from the hardware graphic de-

bucket of
nanmed

obj ects

HARD OBJECT SOFT_OBJECT
@ @
oS o |l &
MVEMORY S S
SYSTEM § §
PROCESSOR o o
KEYBOARD e >
(.o 22
g 3

Figure 8: Hardware components and software com-
ponents segregation.

SOFT_OBJECT

f

BI TVAP

T

BITMAP 15 BITMAP_16 BITMAP 24 Bl TMAP_ 32

VECTOR

Gt

VI DEO

Figure 9: Dynamic inheritance to select the appropri-
ate VIDEO DRIVER.

HARD_OBJECT

/\

| DE_CONTROLER DRI VE FLOPPY_CONTROLER
I DE FLOPPY

/\

FAT_12BI TS FAT_16BI TS FAT_32BI TS EXT2FS
I NCDE
DI RECTORY FI LE

Figure 10: Another example of dynamic inheritance
(file system selection).

vice (graphics accelerator embedded on the board, bit
depth, ...).

5.3 The Isaac file system

The implementation of the Isaac file system is anoth-
er example of dynamic inheritance usage (fig. 10).
The abstract INODE object is inherited by FILE and
DIRECTORY as well. The actual INODE object parent
slot indicate the appropriate file representation: FAT
_16BITS or EXT _2FS for example. Then, the file repre-
sentation itself may inherit FLOPPY when this inode
is on a floppy disk or IDE in the case of some hard
disk. Once again, dynamic inheritance is extremely
useful and flexible in this case.

5.4 The quick-sort benchmark

Our compiler, while complete, is still under develop-
ment, and it is not possible to carry out many re-
liable tests of performances. Nevertheless, a simple
test of the quick-sort algorithm is very promising s-
ince the performances are equivalent to those of a sim-
ilar C program. In spite of the absence of hard-coded
test/loop statements in Lisaac, the generated C code
is very similar to the hand-written C code, hence the
similar performances. To achieve the translation from
Lisaac to C, our compiler use traditional removal of
recursivity as well as inlining, code specialization and
data flow analysis. Most of our compilation strat-
egy come from our experiment with the SmallEiffel
compiler (Zendra et al. 1997) and from the Cartesian
Product Algorithm of Ole Agesen for the Self language
(Agesen 1995).

Figure 11 shows user times which we obtained on
the same algorithm of quick-sort out of C, SmallEiffel
and Lisaac. Those tests were carried out on INTEL
Pentium IT to 333 MHz with 128Mo of RAM memory
under Linux 2.2.17 and GCC 2.95.2..

6 Conclusion

The set up of our Isaac operating system, led us
to conceive a new object-oriented language, called
Lisaac (cf. 3 and 4). While remaining compact,
uniform and very close to Self, another prototype-
based language, our Lisaac language differs from Self
by adding a reliable policy for communications and
protections (cf. 4.1.3).

‘ Compiler ‘ user time -00 ‘ user time -03 ‘
gce 2.95.2 84.030 s 33.840 s
SmallEiffel -.75 87.920 s 36.850 s
Lisaac 82.980 s 33.620 s

Figure 11: Execution time of the quick-sort bench-
mark.

Lisaac is also conceived to manage programming
of interrupt vectors (cf. 4.1.4) as well as other vari-
ous architecture specific tables handling. Isaac is cur-
rently running on Intel processors but the design of
Lisaac make it easily portable on other architectures
(cf. 4.1.5).

The Lisaac language is compiled using C as an
intermediate assembly language. Lisaac constitutes
a powerful tool in the making of an efficient, flexi-
ble, and cleanly design operating system. As Self is,
Lisaac is fully prototype-based and extremely flexible
and dynamic. The very novelty of Lisaac is to take in
account protections mechanism as well as operating
system tools. The architecture of our object operat-
ing system takes fully advantage of the possibilities
offered by prototypes and especially by dynamic in-
heritance. (cf. 5.2 and 5.3).

The firsts benchmarks of the generated code’s exe-
cution are very encouraging (cf. 5.4) and let us think
that it is quite possible to obtain Lisaac objects run-
ning as fast as C programs are.

References

Agesen, O. (1995), The Cartesian Product Algorith-
m: Simple and Precise Type Inference of Para-
metric Polymorphism, in ‘Oth European Con-
ference on Object-Oriented Programming (E-
COOP’95)’, Vol. 952 of Lecture Notes in Com-
puter Sciences, Springer-Verlag, pp. 2-26.

Colnet, D. & Zendra, O. (1999), Optimizations of
Eiffel programs: SmallEiffel, The GNU Eif-
fel Compiler, in ‘29th conference on Technolo-
gy of Object-Oriented Languages and System-
s (TOOLS Europe’99), Nancy, France’, IEEE
Computer Society PR00275, pp. 341-350. LO-
RIA 99-R-061.

elf (1995), Ezecutable and Linking Format (ELF)
Specification. v1.2.
URL: ftp://download.intel.com/design

/perftool/tis/elf11g.zip

Hummel, R. (1990), Interruption and exception, in
‘Intel486 Microprocessor Family Programmer’s
Reference Manual’, pp. 83-104.

Meyer, B. (1994), Eiffel, The Language, Prentice Hall.

P. Borovansk y, H. Cirstea, H. D. 1. (2000), Library
reference manual, in ‘ELAN’, pp. 20-24.

Processor, L (n.d.),
‘http://www.sandpile.org/docs/intel /80386.htm’.

Sonntag, B. (2000), ‘http://www.isaac0S.com’, Site
web: Isaac (Object Operating System).

Sonntag, B. (2001), Article in French about: Usage
of the processor memory segmentation with a
high-level language., in ‘2ime Confrence Franaise
sur les systmes d’Exploitation, (CFSE’2)’, ACM
Press, pp. 107-116.

steering committee, E. (2000),
‘http://gcc.gnu.org’, Site web : GNU
Compiler Collection.

Ungar, D. & Smith, R. (1987), Self: The Power
of Simplicity, in ‘2nd Annual ACM Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’87)’, ACM
Press, pp. 227-241.

Zendra, O., Colnet, D. & Collin, S. (1997), Efficien-
t Dynamic Dispatch without Virtual Function
Tables. The SmallEiffel Compiler., in ‘12th An-
nual ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications
(OOPSLA’97)’, Vol. 32, number 10 of SIGPLAN
Notices, ACM Press, pp. 125-141. LORIA 97-R-
140.

